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Derivation of Eq. (7) 

 

Consider a one-dimensional element of thickness ∆𝑥 centered at the point 𝑥 bounded by the 

points 𝑥 −
∆𝑥

2
 and 𝑥 +

∆𝑥

2
. Over a time interval ∆𝑡 centered around 𝑡, the mass conservation of lint 

fibers in this element can be stated as 

 

 

mass stored =  mass in −  mas out +  mass generated. (S1) 

 

 Each term in this equation is given as follows. 

 

mass stored = 𝑚𝐿 [𝑛 (𝑥, 𝑡 +
∆𝑡

2
) − 𝑛 (𝑥, 𝑡 −

∆𝑡

2
)] ∆𝑥, (S2) 

 

where 𝑚𝐿 is the mass per lint fiber. Assuming velocity 𝑢 to be positive (i.e. directed toward 

positive 𝑥 direction), 

 

mass in = 𝑚𝐿𝑛 (𝑥 −
∆𝑥

2
, 𝑡) 𝑢 (𝑥 −

∆𝑥

2
, 𝑡) ∆𝑡, (S3) 

because in time ∆𝑡 the mass within the volume of 𝑢 (𝑥 −
∆𝑥

2
, 𝑡) ∆𝑡 will enter the element through 

the location 𝑥 −
∆𝑥

2
. Similarly 

 

mass out = 𝑚𝐿𝑛 (𝑥 +
∆𝑥

2
, 𝑡) 𝑢 (𝑥 +

∆𝑥

2
, 𝑡) ∆𝑡. (S4) 

Finally, 

 

mass generated = 𝑚𝐿𝑆(𝑥, 𝑡)∆𝑥∆𝑡. (S5) 

 

Hence Eq. (S1) read 

𝑚𝐿 [𝑛 (𝑥, 𝑡 +
∆𝑡

2
) − 𝑛 (𝑥, 𝑡 −

∆𝑡

2
)] ∆𝑥 =

{
𝑚𝐿𝑛 (𝑥 −

∆𝑥

2
, 𝑡) 𝑢 (𝑥 −

∆𝑥

2
, 𝑡) ∆𝑡 − 𝑚𝐿𝑛 (𝑥 +

∆𝑥

2
, 𝑡) 𝑢 (𝑥 +

∆𝑥

2
, 𝑡) ∆𝑡

+𝑚𝐿𝑆(𝑥, 𝑡)∆𝑥∆𝑡
 , (S6) 

 

Dividing this equation by 𝑚𝐿∆𝑥∆𝑡 and taking the limit as both ∆𝑥 and ∆𝑡 approach 0, one 

obtains Eq. (7). 
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